五部门关于开展2024年江南网页版登录入口官网下载 下乡活动的通知
干货!分析汽车线控技术
干货!分析汽车线控技术对于自动驾驶汽车的控制人们常有很多疑问。比如转向,具体跟车辆的交互,是传入转向角度还是力度?刹车制动是由 IPC 告诉硬件多少力度呢,还是智能到具体的制动百分
日产旗下的英菲尼迪 Q50 是首批使用线控转向的量产车辆线控转向也已经得到实际应用,这就是日产旗下的英菲尼迪 Q50。实际目前的电子助力转向(EPS)非常接近线控转向了。EPS与线控转向之间的主要差异就是线控转向取消了方向盘与车轮之间的机械连接,用传感器获得方向盘的转角数据,然后 ECU 将其折算为具体的驱动力数据,用电机推动转向机转动车轮。而 EPS则根据驾驶员的转角来增加转向力。线控转向的缺点是需要模拟一个方向盘的力回馈,因为方向盘没有和机械部分连接,驾驶者感觉不到路面传导来的阻力,会失去路感,不过在无人车上,就无需考虑这个了。在Q50L 上线控转向还保留机械装置,保证即使电子系统全部失效,依然可以正常转向。
线控制动
线控制动是关键的也是难度的。要了解线控制动,首先要了解汽车的刹车原理。轻型车通常采用液压制动。
传统制动系统主要由真空助力器、主缸、储液壶、轮缸、制动鼓或制动碟构成。当踩下刹车踏板时,储液壶中的刹车油进入主缸,然后进入轮缸。轮缸两端的活塞推动制动蹄向外运动进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。当驾驶者踩下制动踏板时,机构会通过液压把驾驶人脚上的力量传递给车轮。但实际上要想让车停下来必须要一个很大的力量,这要比人腿的力量大很多。所以制动系统必须能够放大腿部的力量,要做到这一点有两个办法:一是杠杆作用;二是利用帕斯卡定律,用液力放大。制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理:杠杆作用;液压作用;摩擦力作用。杠杆作用已经无需赘言,大家想必已经烂熟于心,在杠杆的左边施加一个力 F,杠杆左边的长度(2X)是右边(X)的两倍。因此在杠杆右端可以得到左端两倍的力 2F,但是它的行程 Y 只有左端行程2Y 的一半。刹车踏板就是个杠杆。考虑到踏板的倾斜度,一般踏板的设计行程不超过 18 厘米。液压原理需要特别说明,液体是无法被压缩的,密闭容器里的液体的压力有个特点:不论是液体内部、还是压向容器壁的力,到处都一样大。——即:如果一平方米上有一吨的力量,那么在所有的地方,一平方米上的力都是一吨。这叫帕斯卡定理。由于液体无法压缩,所以这种方式传递力矩的效率非常高,几乎100% 的力传。液压传力系统的好处就是可以以任何长度,或者曲折成各种形状绕过其他部件来连接两个圆桶型的液压缸。还有一个好处就是液压管可以分支,这样一个主缸可以被分成多个副缸。液压的另一个作用就是放大力矩。如果主缸的直径是1寸,轮缸的直径是 3 寸,那么给主缸上面施加任何一个力,就会在轮缸上放大 9 倍。不过主缸的活塞推动 9 厘米,轮缸的活塞推动距离只有 1 厘米,能量守恒。通常轿车的主缸直径是 22 毫米,前轮缸直径是 32 毫米,后轮缸直径是 28 毫米。不同的材料表面,有不同的锯齿结构;举例来说:橡皮与橡皮之间就比钢与钢之间更难滑动。材料的类型决定了摩擦系数。所以摩擦力与物体接触面上的正压力成正比。例如:如果摩擦系数为 0.1,一个物体重 100 磅,另一个物体重 400 磅,那么如果要推动他们就必须给 100 磅的物体施加一个 10 磅的力,给 400 磅的物体施加一个 40 磅的力才能克服摩擦力前进。ABS说完了这些,让我们来说说 ABS。
ESP 与 ABS 非常接近,与 ABS 的不同在于 ESP 可以在没有踩刹车踏板的情况下向轮缸输出制动压力,ABS 只能在踩下刹车踏板后从主缸向轮缸输出压力。压力生成器就是电机和柱塞泵, 与ABS 比多了 4 个柱塞泵,4 个电磁阀,也就是 VLV 和 USV。
博世第九代 ESP 增加了两个特殊功能,一个是 ACC,自适应巡航,ESP 可以部分控制电子节气门。另一个是 AEB,ESP 可以部分控制刹车系统。有些认为 ESP 既可以控制油门又可以控制刹车,是个很好的线控系统,非也。博世对国内厂家一般只开放 ACC 和 ESP 量产接口协议,刹车力度大约为 0.5g,标准的刹车力度在 0.8g 以上,0.5g 远不够用。再次,在设计之初,ESP 控制刹车系统只是在少数紧急情况下使用,可能 1 年用不了 2 次,一般泵的容量只有3 毫升,每使用,柱塞泵都要承受高温高压,频繁使用,会导致柱塞泵发热严重,精密度下滑,导致 ESP 寿命急剧下滑,常规刹车系统 1 小时就可能使用数次,如果用 ESP 做常规刹车系统,可能 1 个月就报废了。即便是不计寿命问题,ESP 的泵油功率有限,且缺乏真空助力,反应速度较慢。如果 ESP 真的可以做常规制动,那么博世也无需开发 Ibooster,日立无需开发 EACT,大陆无需开发 MK C1,天合无需开发 IBC。如何做到常规的线控制动,这得从真空助力器说起。
如果膜片两边有即使很小的压力差,由于膜片的面积很大,仍可以产生很大的推力推动膜片向压力小的一端运动。真空助力系统,是在制动的时,也同时控制进入助力器的真空,使膜片移动,并通过联运装置利用膜片上的推杆协助人力去踩动和推动制动踏板。需要注意推力来自压力差,而非真空。电动车和混合动力车不能依赖内燃机取得真空,需要用电子真空泵。真空助力器会减少一部分发动机效率,所以近来有些油车上也使用电子真空助力器,用电机制造真空。线控制动正是从真空助力器延伸开来,用一个电机来代替真空助力器推动主缸活塞。由于汽车底盘空间狭小,电机的体积必须很小,同时要有一套高效的减速装置,将电机的扭矩转换为强大的直线推力。这其中的关键因素就是电机主轴,日本是此领域的霸主。在电机技术不够先进的 1999 年前,人们只得放弃这种直接推动主缸的思路。转而使用高压蓄能器。这就是奔驰的 SBC、丰田的 EBC 系统、天合的SCB,这套系统利用电机建立液压,然后将高压刹车油储存在高压蓄能器中,需要刹车时释放。这套系统结构复杂,液压管路众多,成本高昂,可靠性不高。奔驰曾经大规模召回过 SBC 系统,丰田也曾经召回过 EBC 系统,奔驰今天已经几乎不用 SBC 系统。而丰田从 2000 年一直用到现在。通用和福特的混动车上则全部使用天合的 SCB。由于成本过高,从 2007 年起,EVP 电子真空泵开始在电动车或混动车上取代这种高压蓄能器设计,EVP 极为简单,就是将油车的真空助力换位电子真空泵获得真空,缺点非常明显,首先它几乎没有任何能量回收,其次,刹车时会发出刺耳的噪音,重要,它必须人力首先踩下制动踏板,也就是说它并非线控制动,而是机械制动。优点也很明显,首先是成本很低,再者是设计异常简单,油车的底盘几乎不做丝毫改动就可以用来做混动车,这对中国企业来说非常重要,中国企业缺乏自主设计底盘能力。随着电机技术的发展,日立旗下的东机特工在 2009 年首次推出电液线控制动系统 E-ACT。除丰田外,大部分日系混动或纯电车都采用这种设计,典型的就是日产 Leaf。说起来很简单,用直流无刷超高速电机配合滚珠丝杠直接推动主缸活塞达到电液线控制动,这套方案对滚珠丝杠的加工精度要求很高。传统的液压制动系统反应时间大约 400-600 毫秒,电液线控制动大约为 120-150 毫秒,安全性能大幅度提高。百公里时速刹车大约少可缩短 9 米以上的距离。同时用在混动和电动车上,可以回收几乎 99% 的刹车摩擦能量。是目前公认的制动方式,为了保证系统的可靠性,这套制动系统一般都需要加入 ESP(ESC)做系统备份。早在 1999 年大众在开发纯电动车过程当中也很想使用这种电机直接推动主缸的设计,但是德国的电机工业当时没有能力满足大众的需求,大众采取了妥协的设计。既然电机的能量达不到,那就继续用高压蓄能器配合,但是推动主缸的是电机,大众称之为 eBKV,2009 年的大众 E-UP上首次使用。博世从 e-UP 中获得灵感,加上博世是电机大师,经过博世的努力,终在 2013 年去掉了高压蓄能器,单用电机推动主缸,这就是 iBooster。
线控液压制动器(EHB)EHB(Electro-HydraulicBrake)即线控液压制动器,是在传统的液压制动器基础上发展而来的。EHB 用一个综合的制动模块来取代传统制动器中的压力调节器和 ABS 模块等,这个综合制动模块就包含了电机、泵、蓄电池等等部件,它可以产生并储存制动压力,并可分别对 4 个轮胎的制动力矩进行单独调节。比传统的液压制动器, EHB 有了显著的进步,其结构紧凑、改善了制动效能、控制方便可靠、制动噪声显著减小、不需要真空装置、有效减轻了制动踏板的打脚、提供了更好的踏板感觉。由于模块化程度的提高,在车辆设计过程中又提高了设计的灵活性、减少了制动系统的零部件数量、节省了车内制动系统的布置、空间。可见相比传统的液压制动器,EHB 有了很大的改善。但是 EHB 还是有其局限性,那就是整个系统仍然需要液压部件,其基本的还是离不开制动液。电子机械制动(EMB)如果把 EHB 称为「湿」式 brake-by-wire 制动系统的话,那么EMB就是「干」式 brake-by-wire 制动系统。EMB 全称Electro Mechanical Brake,和 EHB 的区别就在于它不再需要制动液和液压部件,制动力矩完全是通过安装在 4 个轮胎上的由电机驱动的执行机构产生。因此相应的取消了制动主缸、液压管路等等,可以大大简化制动系统的结构、便于布置、装配和维修,更为显著的是随着制动液的取消,对于环境的污染大大降低了。
因此结构相对简单、功能集成可靠的电子机械制动系统越来越受到青睐,可以预见EMB将终取代传统的液压(空气)制动器,成为未来车辆的发展方向。总结一下制动组件的发展里程:
-
召回110万汽车,特斯拉取消强制单踏板模式2023-05-16
-
取消“强制单踏板”,不服输的特斯拉向现实低了头2023-05-11
-
当丰田混动遇见特斯拉的单踏板模式2022-12-13
-
第三季度营收同比翻三倍!踩猛“油门”零跑必将领跑?2022-11-17
-
伯特利:公司的线控制动产品既可以应用在江南网页版登录入口官网下载 也可以应用于传统燃油车上2022-11-10
-
银河证券:线控底盘将成为新能源车发展的关键领域之一2022-09-28
-
汽车线控底盘赛道火起来了:新的发展“窗口期”来临2022-09-08
-
智能电动汽车赛道深度二:线控转向 高阶智能驾驶核心部件2022-07-22
-
电气化车型为何要匹配一套线控制动系统?2022-07-04
-
以安全为核心,大陆集团公布新型线控制动系统技术细节2022-07-04
-
特斯拉确认将于2024年生产无方向盘和踏板的新型自动驾驶出租车2022-04-22
-
为什么说线控技术是无人驾驶实现的前提?2022-02-22
-
业绩“腰斩”后,索尼踩下“油门”,在2022年驶入电动汽车市场2022-01-21
-
集度成为线控转向相关国家标准制定的联合牵头单位2021-12-07
-
大众柴油门事件的根源、377亿美元和文德恩的健康2021-11-23