“指尖的光伏”之光伏组件用背板落砂实验浅析
来源:江南娱乐-意甲尤文图斯亚
时间:2014-07-17 19:28:08
热度:
“指尖的光伏”之光伏组件用背板落砂实验浅析太阳电池背板主要分为含氟背板和不含氟背板两大类,其中含氟背板根据其含氟结构又可分为氟薄膜(如 PVF、PVDF 等)和氟涂层(如改性PTF
太阳电池背板主要分为含氟背板和不含氟背板两大类,其中含氟背板根据其含氟结构又可分为氟薄膜(如 PVF、PVDF 等)和氟涂层(如改性PTFE、FEVE 等)。无论是氟薄膜还是氟涂层,都需要保证太阳电池组件在户外使用 25 年,因此,背板在户外直接与环境大面积接触时,需要具备卓越的耐长期老化性能,包括湿热、干热、紫外、风沙冲击等等,本文从光伏组件用背板耐落砂冲击实验说起,告诉你真正的户外环境是怎样的?
我们知道,IEC 的标准中并没有提到光伏组件耐风沙冲击的相关要求,并不等于说组件厂商不需要关注这项指标,以中国新疆塔克拉玛干沙漠为例,年均输沙量在数吨,沙漠中心地区年均输沙量甚至高达数十吨,在这种情况下,如果再不对其进行研究,想必电站业主也不放心吧。
现在,越来越多的组件厂商开始关注背板耐风沙冲击的性能,在第九届 CSPV 论坛上,天合光能的代表也对其进行了分析。由于 IEC 中没有相关标准,天合以 ASTM D968-93 为准,研究了砂子对背板外层的影响,消除了大家的疑惑,同时也对真正的户外情况进行深入分析,让与会代表有了更深入的了解。后期如果还碰到 IEC 中没有规定相应标准的情况,希望业界同仁共同努力,进行更合理,更科学的实验,得到更可靠、更令人信服的结果。
背板空气面落砂实验
实验准备:实验前,先检查从导管下端落下的砂流,用底部调整螺钉使装置从中心直至从护卫 90° 的两个位置上观察时,砂束的内心正好落在砂流的中心位置上为止。实验采用的标准石英砂粒径规格在 600-850um(其中粒径小于 600um 的不超过 5%,大于 850um 的不超过 15%),一次倒入量以 2000mL±10mL 数量为宜,流出速度为 21-23.5s 内流出2L。
图 1 落砂耐磨仪器结构示意图
操作步骤:在每块试块上标出 1 个圆形区域,该区域即为冲击面积,约 0.0005 平米(直径约 25mm),将试板固定在试验器上。调整试板使其标出的圆形区域正好在导管的中心的下方,将一定体积的标准砂灌注到漏斗中,打开开关,使砂通过导管,撞击到样板上。安装在试验器底部的容器收集落下的砂。重复上述操作,直到耐 UV 层破坏,有 4mm 直径的区域露出底材,快接近终点时,可以在漏斗中加 200mL±2mL 的砂。
结果计算:按公式计算待测样品的耐磨性:A=V/T
式中:A 耐磨性,单位为升每微米(L/um)
V 磨料使用量,单位为升(L)
T 耐 UV 层厚度,单位为微米(um)
结果取两次平行测定的算术平均值,保留一位小数。
我们选取了两家背板厂商的背板做了上述实验,分别记为 A 和 B,结果如下表所示。
我们发现,A 背板在 55L 落砂实验后表面耐 UV 层被完全磨损,而 B 背板在 190L 落砂实验后,表面耐 UV 层依然存在。意味着 B 背板比 A 背板更好吗?
真正的户外环境是怎样的?
砂的移动有三种形态:滚动、跳动和浮游。滚动是跳动着的砂粒由于碰撞而在地表移动的现象,一般粒径超过500um 的砂会产生这种现象,但此类砂不会飞舞。另一种情况是跳动,这是沙漠特有的现象,这类砂粒粒径在 100-500um,由于风等原因被举起后落下,这是唯一会对背板产生影响的现象。最后一种是浮游,在有风的情况下,可以移动到沙漠以外的地域,北方一些城市的雾霾天气与它有关,该类砂粒粒径小于 100um。
图 2 砂粒粒径与运动状态
根据武藏工业大学环境情报学院教授吉崎真司的研究,在沙漠表面的砂粒中,只有 10-20% 的砂子飞在地表面 30cm 以上,实际上,西部地区很多电站,其组件离地高度都在 30cm 以上,这样一来,空气中飞舞的砂子将更少。另外,还有一个发现,在砂径为 75-500um 的砂分布着的沙漠中,在地表 20cm 中采取砂粒,占比最高的砂径在 150-210um。
我们以中国塔克拉玛干沙漠为例,选取肖塘和塔中两个地区,分别用梯度集沙仪于沙尘暴条件下进行沙样采集,两个地区的砂粒分布情况如下图所示。(参考文献:新疆师范大学硕士论文《塔克拉玛干沙漠沙粒形貌特征分析》,作者:赵聪敏)
图 3 塔克拉玛干肖塘站,梯度集沙仪 2011 年 4 月 29 日沙尘暴采集沙洋
图 4 塔克拉玛干塔中西站,梯度集沙仪 2011 年 3 月 21-22 日沙尘暴采集沙样
看到这里,读者可能已经产生疑惑了,按照 ASTM D968-93 的标准,砂粒粒径在 600-850um,而上图中显示,600-850um的砂粒占比几乎为零,这又是什么原因?
还原真实情况,估算组件寿命
在风沙理论研究与防沙实践中,输沙量是一个重要的物理量和极其有用的工程参数,它表示地表一定高度范围内的输沙总量,是区域风沙活动强度的最直接表征。在塔克拉玛干沙漠,不同地区年输沙量不一,差异很大,例如上文提到的肖塘输沙量仅相当于塔中的一半。
图 5 塔克拉玛干沙漠年输沙量统计
既然如此,我们就来计算一下,光伏背板究竟需要怎么的耐磨性才能满足组件 25 年的使用寿命,还是以肖塘和塔中为例,假设组件安装于地面 30cm 以上,主要的砂粒粒径在 63-250um 之间,那么实验面积中应承受的一年的砂粒重量为:
6692kg/m2*y*0.0005m2 = 3.346kg/y
25 年的砂粒重量累计为:
3.346kg/y*25 = 83.65kg
以石英砂的密度为 2.65 计算(根据粒度大小,堆积密度在 1.6-1.7),25 年的累计砂粒体积为:
83.65kg ÷ 1.6 = 52L(颗粒度大小在 63-250um 的砂子)
实际上,能飞到距离地面 30cm 以上的砂只占总比例的 20%,因此,塔克拉玛干肖塘地区和塔中地区 25 年输沙量所需落砂实验的标准分别为:
肖塘:52L*0.2 = 10.4L
塔中:10.4*1.98 = 20.6L
实验结果出人意料,事实上也确实如此,在西部的众多电站中,我还没有听说背板被风沙磨伤的情况,国外某些知名的原材料厂商(大家都知道),一味的强调耐磨性而不考虑实际情况是否有必要,这是不科学也是不负责任的!
重复落砂实验,结果更为可信
天合光能的代表展现了他们在落砂方面做过的一系列研究,由于标准砂的粒径过大,他们以碳化硅进行重复落砂实验,碳化硅的粒径在 180um,表面更为坚硬、锋利,硬度指数为 9,仅次于金刚石的硬度指数 10,经过 30L 的冲击,也未见有磨伤,大大印证了背板在沙漠地区耐用 25 年的可靠性!
读者看到这里,心里也十分清楚了,落砂实验用于背板表层在沙漠地区耐磨寿命的可行性是有的,不过,还需要根据实际情况来改善测试方法,当然,如果能辅之于紫外、湿度、温度等条件,那就更加贴近实际情况了。
结语
在当前光伏危机未除,国内外背板厂商“诸侯割据”的情况下,如何应对新问题和新挑战成为摆在国内光伏同仁面前的一道难题,在背板国产化进程的大环境下,相信我们一定能打破国外原材料厂商的垄断,未来的光伏背板,还看中国!
背板厂商 | 空气面厚度 | 砂子用量 | 实验前 / 实验后 |
A | 25um | 约 50L | |
B | 30um | 约 190L |
实验标准 | 使用砂 | 粒径 | 硬度 | 用砂量 |
落砂实验 | 标准砂 | 600-850um | 6-7 | 10L |
天合方法 | 碳化硅 | 180um | 9 | 30L 未开孔 |
上一篇:海润光伏副总裁姜庆堂先生离职
-
非洲最大的太阳能发电项目开建2024-08-16
-
欧盟光伏出招有利有弊2024-08-16
-
日或成今年全球最大光伏市场2024-08-16
-
光伏度电补贴起航2024-08-16
-
君阳太阳能开市前停牌未悉原因2024-08-16
-
台湾旭晶太阳能日本广岛光伏电站并网发电2024-08-16
-
欧洲最大光伏企业“暴亡” 6年内市值仅剩约1/442024-08-16
-
投资者对中国光伏保持谨慎2024-08-16
-
光伏企业的6大矛盾心理2024-08-16
-
南网分布式光伏态度冷热两重天2024-08-16
-
中国出台新的光伏政策抵消欧盟壁垒2024-08-16
-
下游光伏产品价格有望止跌回升2024-08-16
-
中欧达成价格承诺 光伏概念股迎机遇2024-08-16
-
储能进入分布式光伏市场是必然趋势2024-08-16
-
多地分布式光伏发展缓慢2024-08-16