蓄电池的电化学反应原理怎样理解
来源:江南娱乐-意甲尤文图斯亚
时间:2024-08-17 08:45:26
热度:
蓄电池的电化学反应原理怎样理解【专家解说】:常见蓄电池的原理现在,常见的蓄电池有镍氢NiMH、镍镉NiCd和锂离子LIB蓄电池。由于各自的电化学反应机理不尽相同,因此也各有其特点和
【专家解说】:常见蓄电池的原理
现在,常见的蓄电池有镍氢NiMH、镍镉NiCd和锂离子LIB蓄电池。由于各自的电化学反应机理不尽相同,因此也各有其特点和不同的应用领域。本文根据它们的电化学反应机理,介绍各自的特点和相应的应用领域。
电化学反应机理
NiMH蓄电池和古老的NiCd蓄电池有亲缘关系,为此首先介绍NiCd蓄电池,其次是NiMH蓄电池,最后说明LIB。
1. NiCd蓄电池
早在1899年,NiCd蓄电池就已发明,于1947年实现完全密化的NiCd蓄电池,一直应用至今。长时间的应用表明,NiCd蓄电池不失为一种高性能和高可靠性的蓄电池。
如今的NiCd蓄电池,在发泡镍或镍纤维状基体上附着大量NiOOH活性物质作为正极,以重金属镉Cd作为负极,一同置进电解液(KOH溶液)中,经密封后构成蓄电池。该蓄电池容器内,进行的电化学反应如下:
这个电化学反应的特征在于,明明看到作为电解液成分的KOH,但它并不直接参与电化学反应。由于制造蓄电池时使负极的容量大于正极的容量,当过充电时只能看到由正极产生的氧(O2);由于负极残留未被充电部分,不产生氢(H2);由于产生的氧(O2)被负极吸收,所以可以实现密封。
从NiCd蓄电池的电化学反应机理得知,它是依靠OH-离子快速移动,反应比铝酸蓄电池平稳。因此,它的重要特征是放电容量尽管在大电放逐电时也不出现低下现象(可维持1.2 V端电压)。结晶结构基本上不因充放电而变化,使用寿命较长。
2. NiMH蓄电池
美国和荷兰都对能吸躲氢的合金MH(Hydrogen Storing alloy metal)开展研究,并试图用于开发蓄电池。世界上出现NiMH蓄电池商品是在20世纪九十年代初,发展却十分迅速。实践证实,通过适当组合La、Ce、Pr和Nd等稀土元素能形成吸躲氢的合金MH,它所能开释/吸躲的氢H2量相当大,例如,1cc的液体氢能变成784cc的氢气,而1cc体积的吸躲氢的合金MH却能开释出1000cc的氢气。
在NiCd蓄电池里,只要利用吸躲氢的合金MH取代有毒的重金属Cd(镉),便形成对环境无污染的绿色蓄电池NiMH,其电化学反应如下:
由于设计时可像NiCd蓄电池一样也把负极MH的容量制成足够大,当过充电时由正极放出的氧气可被MH中的氢气还原,使蓄电池可实现密封。NiMH蓄电池和NiCd蓄电池一样,大电放逐电时可维持平稳的1.2V端电压。值得称道的是NiMH蓄电池的废弃物不污染环境,而NiCd蓄电池废弃物(若不回收)必将造成环境污染。
NiMH蓄电池的负极材料结构和电化学反应机理不同于NiCd蓄电池,它的能量密度和使用寿命都比NiCd蓄电池优越,从而也能开拓出更广阔的应用市场。正是由于这种缘故,世界各产业发达国家都高度重视NiMH蓄电池的研究与开发。据报道,我国有色金属研究院的科研职员对MH合金已开展很深进的研究,并且获得可喜的新进展。
3. LIB蓄电池
以金属锂Li作为负极的一次性电池,口碑很好。因此,各产业发达国家都试图利用Li制造蓄电池,1979年,加拿大MoLi-Energy公司的锂金属蓄电池在手机里起火的事故,曾迫使锂金属蓄电池一度退出市场。但是,由于锂Li金属作为负极的蓄电池具备理想的性能,各国仍在潜心研究与开发。
现在,市场流行的锂离子蓄电池(LIB)是以牺牲电池性能获取安全性和使用寿命的折衷方案,其电化学反应如下:
LIB是由涂有LiCoO2活性物质的铝集电体作为正极、碳(石墨或活性碳)和溶解有LiPF6的有机溶液构成的。当充电时,LiCoO2中分层结构里Li离子游向负极被分层结构的碳所吸附;当放电时,碳分层结构里吸附的锂离子又回游到正极,于是正极复原成LiCoO2分层结构,负极也复原成碳分层结构。也就是说,该蓄电池在周而复始的充放电过程中,出现的只是锂离子而不是活泼的锂金属。因此,LIB具备较好的安全性和可使用的寿命。
LIB的主要特点是具有较高的重量能量密度,平稳的放电电压为3.6 V,可在-20℃~60℃的温度范围内工作,无存储效应,自放电率低(因而不能大电放逐电)。为了安全地使用LIB,要求具备严防过充电和过放电的保护设施。
各种蓄电池比较
上述NiCd、NiMH和LIB蓄电池的电化学反应机制不同,各个蓄电池的特点也不尽相同。为了便于比较,需要用到评价蓄电池性能的标准或者是参数。通常使用的评价参数,如像平衡放电时的蓄电池端电压Vdc、再充电次数(Recharges)或者充放电周期个数、价格比率(Price Ratio)、能量密度(细分为重量能量密度和体积能量密度)和功率密度等,都是用定量的数值表示的。例如,NiCd和NiMH的Vdc=1.2V,而LIB的Vdc高达3.6V。当需要3.6V供电电压时,人们都宁愿用1块LIB而不用3块NiCd(或NiMH)蓄电池串联供电。这一实例说明,利用定量的参数可对各种蓄电池进行横向比较,便于选择应用。
除此之外,蓄电池的安全性和是否具有记忆效应等,也是影响蓄电池广泛应用的重要因素,值得留意。
根据以上所述,可把现在常用的电能转换器件和电能储存器件的各种参数列于表1,以便用户选择。其中,Wh/kg是蓄电池的重量能量密度,表示每kg蓄电池能提供出的Wh(瓦小时)电能;Wh/Liter是蓄电池的体积能量密度,表示每公升(Liter)蓄电池能提供出的Wh电能;W/kg表示蓄电池的功率密度,表示每kg蓄电池能提供出的瓦数(W),即电功率;Price Ratio是蓄电池之间的价格比率,表示各种蓄电池的相对价格。
从表1中能够清楚地看到,NiCd、NiMH、LIB和双电荷层电容器都各有短长,各项参数都十全十美的器件,目前市场上还未出现。因此,蓄电池器件的选用,必须结合具体应用实际加以选择,公道搭配使用。
蓄电池的应用
NiCd蓄电池最严重的题目是其废弃物对环境造成严重污染,危及人类健康。由于在欧美和日本已建立回收再利用机制,环境污染题目也基本上获得解决。至于NiCd蓄电池存储(记忆)效应,只要使用时牢记,一定要使它充分放电后再进行充电就可避免;否则,假如NiCd蓄电池在放电很浅的情况下就又充电,它就会记忆住放电深度,用未几久就又需要充电。
除了上述的不足之处以外,NiCd蓄电池仍有一定的上风,诸如价格相当便宜,电压控制和温度控制的充电设施相对简单,重负载的放电能力以及多种型号(高容量型、急速充电型等)等,堪称是经济实惠的蓄电池。其应用领域相当广泛,只要不计较其体积和重量,可用于收发信机、无绳电话、携带式AV机器和电动机器等。
NiMH蓄电池是NiCd蓄电池的新发展,体积能量密度高,而且对环境无污染和无记忆效应,受到广大用户的欢迎。它具备较高的容量,可大电放逐电,答应再充电次数高达500~1000次,价格日趋公道(预计今后3~5年内,每年本钱可下降3%),并且可利用现行的NiCd蓄电池的充电设施,因而NiMH蓄电池获得广泛应用。NiMH蓄电池和NiCd蓄电池一样,具有圆筒形(AAA、AA、A、C、D、F和M)、方形和纽扣形电池。这些NiMH蓄电池可装配成多种电池组,可以满足电子设备日益增长的便携性需求。例如,NiMH蓄电池非常适合于大电放逐电需求,如像便携式打印机、医疗设备,远程通讯设备,笔记本电脑和数码AV机器(数码相机、数码摄像、数码音频播放机)等,都可应用NiMH蓄电池。原来,NiMH蓄电池实用化比锂离子蓄电池LIB先行一步,于是在移动通讯领域本也是NiMH蓄电池的天下。但是,LIB实用化以后,情况发生逆转,后面将仔细介绍。
NiMH蓄电池由于吸躲氢的合金MH比重很大,导致Wh/kg仅为60左右;尽管NiMH的Wh/Liter可达到300乃至400,W/kg高达160以上,但它的应用远景限定在不严格计较重量的重负载应用领域,例如混合电动车辆(hybrid electric vehicles)、电动车辆、军事野营、抗灾(水灾、地震等)现场用电等方面将发挥出不可替换的重要作用。由于NiMH蓄电池的特性决定它能和太阳能电池板、双电荷层电容器EDLC、便携式风力发电机等构成复合系统。例如混合电动车辆的汽油发动机功率较小,只限于行驶时作为动力,而启动和爬坡时借助于NiMH蓄电池与双电荷层电容器提供电能驱动电动机实现加速;将来的电动车辆主要是依靠大型NiMH蓄电池组和大型双电荷层电容器组复充电方式,加速时由电容器提供脉冲大电流驱动;太阳能电池板和NiMH蓄电池组合供电系统,白天依靠太阳能电池发电为NiMH蓄电池充电,夜间由蓄电池放电;风力发电机和NiMH蓄电池组合供电系统,有风时发电机为NiMH蓄电池充电,无风时由NiMH蓄电池放电。
LIB蓄电池的Vdc=3.6V,再充电次数可达300~400次,能量密度高达287Wh/Liter,堪称是目前世界上最轻便的蓄电池。尽管它在充放电时,都要求一套精密的控制设施保证安全性,而且价格不菲,对于追求轻便和使用效率的移动通讯手机用户,依然是对LIB蓄电池情有独钟。在移动通讯领域,LIB蓄电池终回要完全取代NiCd和NiMH蓄电池。
总之,NiCd、NiMH和LIB蓄电池由于各自机理和特性不同,各有其自己的应用领域,今后将会在不同的领域协调发展。
现在,常见的蓄电池有镍氢NiMH、镍镉NiCd和锂离子LIB蓄电池。由于各自的电化学反应机理不尽相同,因此也各有其特点和不同的应用领域。本文根据它们的电化学反应机理,介绍各自的特点和相应的应用领域。
电化学反应机理
NiMH蓄电池和古老的NiCd蓄电池有亲缘关系,为此首先介绍NiCd蓄电池,其次是NiMH蓄电池,最后说明LIB。
1. NiCd蓄电池
早在1899年,NiCd蓄电池就已发明,于1947年实现完全密化的NiCd蓄电池,一直应用至今。长时间的应用表明,NiCd蓄电池不失为一种高性能和高可靠性的蓄电池。
如今的NiCd蓄电池,在发泡镍或镍纤维状基体上附着大量NiOOH活性物质作为正极,以重金属镉Cd作为负极,一同置进电解液(KOH溶液)中,经密封后构成蓄电池。该蓄电池容器内,进行的电化学反应如下:
这个电化学反应的特征在于,明明看到作为电解液成分的KOH,但它并不直接参与电化学反应。由于制造蓄电池时使负极的容量大于正极的容量,当过充电时只能看到由正极产生的氧(O2);由于负极残留未被充电部分,不产生氢(H2);由于产生的氧(O2)被负极吸收,所以可以实现密封。
从NiCd蓄电池的电化学反应机理得知,它是依靠OH-离子快速移动,反应比铝酸蓄电池平稳。因此,它的重要特征是放电容量尽管在大电放逐电时也不出现低下现象(可维持1.2 V端电压)。结晶结构基本上不因充放电而变化,使用寿命较长。
2. NiMH蓄电池
美国和荷兰都对能吸躲氢的合金MH(Hydrogen Storing alloy metal)开展研究,并试图用于开发蓄电池。世界上出现NiMH蓄电池商品是在20世纪九十年代初,发展却十分迅速。实践证实,通过适当组合La、Ce、Pr和Nd等稀土元素能形成吸躲氢的合金MH,它所能开释/吸躲的氢H2量相当大,例如,1cc的液体氢能变成784cc的氢气,而1cc体积的吸躲氢的合金MH却能开释出1000cc的氢气。
在NiCd蓄电池里,只要利用吸躲氢的合金MH取代有毒的重金属Cd(镉),便形成对环境无污染的绿色蓄电池NiMH,其电化学反应如下:
由于设计时可像NiCd蓄电池一样也把负极MH的容量制成足够大,当过充电时由正极放出的氧气可被MH中的氢气还原,使蓄电池可实现密封。NiMH蓄电池和NiCd蓄电池一样,大电放逐电时可维持平稳的1.2V端电压。值得称道的是NiMH蓄电池的废弃物不污染环境,而NiCd蓄电池废弃物(若不回收)必将造成环境污染。
NiMH蓄电池的负极材料结构和电化学反应机理不同于NiCd蓄电池,它的能量密度和使用寿命都比NiCd蓄电池优越,从而也能开拓出更广阔的应用市场。正是由于这种缘故,世界各产业发达国家都高度重视NiMH蓄电池的研究与开发。据报道,我国有色金属研究院的科研职员对MH合金已开展很深进的研究,并且获得可喜的新进展。
3. LIB蓄电池
以金属锂Li作为负极的一次性电池,口碑很好。因此,各产业发达国家都试图利用Li制造蓄电池,1979年,加拿大MoLi-Energy公司的锂金属蓄电池在手机里起火的事故,曾迫使锂金属蓄电池一度退出市场。但是,由于锂Li金属作为负极的蓄电池具备理想的性能,各国仍在潜心研究与开发。
现在,市场流行的锂离子蓄电池(LIB)是以牺牲电池性能获取安全性和使用寿命的折衷方案,其电化学反应如下:
LIB是由涂有LiCoO2活性物质的铝集电体作为正极、碳(石墨或活性碳)和溶解有LiPF6的有机溶液构成的。当充电时,LiCoO2中分层结构里Li离子游向负极被分层结构的碳所吸附;当放电时,碳分层结构里吸附的锂离子又回游到正极,于是正极复原成LiCoO2分层结构,负极也复原成碳分层结构。也就是说,该蓄电池在周而复始的充放电过程中,出现的只是锂离子而不是活泼的锂金属。因此,LIB具备较好的安全性和可使用的寿命。
LIB的主要特点是具有较高的重量能量密度,平稳的放电电压为3.6 V,可在-20℃~60℃的温度范围内工作,无存储效应,自放电率低(因而不能大电放逐电)。为了安全地使用LIB,要求具备严防过充电和过放电的保护设施。
各种蓄电池比较
上述NiCd、NiMH和LIB蓄电池的电化学反应机制不同,各个蓄电池的特点也不尽相同。为了便于比较,需要用到评价蓄电池性能的标准或者是参数。通常使用的评价参数,如像平衡放电时的蓄电池端电压Vdc、再充电次数(Recharges)或者充放电周期个数、价格比率(Price Ratio)、能量密度(细分为重量能量密度和体积能量密度)和功率密度等,都是用定量的数值表示的。例如,NiCd和NiMH的Vdc=1.2V,而LIB的Vdc高达3.6V。当需要3.6V供电电压时,人们都宁愿用1块LIB而不用3块NiCd(或NiMH)蓄电池串联供电。这一实例说明,利用定量的参数可对各种蓄电池进行横向比较,便于选择应用。
除此之外,蓄电池的安全性和是否具有记忆效应等,也是影响蓄电池广泛应用的重要因素,值得留意。
根据以上所述,可把现在常用的电能转换器件和电能储存器件的各种参数列于表1,以便用户选择。其中,Wh/kg是蓄电池的重量能量密度,表示每kg蓄电池能提供出的Wh(瓦小时)电能;Wh/Liter是蓄电池的体积能量密度,表示每公升(Liter)蓄电池能提供出的Wh电能;W/kg表示蓄电池的功率密度,表示每kg蓄电池能提供出的瓦数(W),即电功率;Price Ratio是蓄电池之间的价格比率,表示各种蓄电池的相对价格。
从表1中能够清楚地看到,NiCd、NiMH、LIB和双电荷层电容器都各有短长,各项参数都十全十美的器件,目前市场上还未出现。因此,蓄电池器件的选用,必须结合具体应用实际加以选择,公道搭配使用。
蓄电池的应用
NiCd蓄电池最严重的题目是其废弃物对环境造成严重污染,危及人类健康。由于在欧美和日本已建立回收再利用机制,环境污染题目也基本上获得解决。至于NiCd蓄电池存储(记忆)效应,只要使用时牢记,一定要使它充分放电后再进行充电就可避免;否则,假如NiCd蓄电池在放电很浅的情况下就又充电,它就会记忆住放电深度,用未几久就又需要充电。
除了上述的不足之处以外,NiCd蓄电池仍有一定的上风,诸如价格相当便宜,电压控制和温度控制的充电设施相对简单,重负载的放电能力以及多种型号(高容量型、急速充电型等)等,堪称是经济实惠的蓄电池。其应用领域相当广泛,只要不计较其体积和重量,可用于收发信机、无绳电话、携带式AV机器和电动机器等。
NiMH蓄电池是NiCd蓄电池的新发展,体积能量密度高,而且对环境无污染和无记忆效应,受到广大用户的欢迎。它具备较高的容量,可大电放逐电,答应再充电次数高达500~1000次,价格日趋公道(预计今后3~5年内,每年本钱可下降3%),并且可利用现行的NiCd蓄电池的充电设施,因而NiMH蓄电池获得广泛应用。NiMH蓄电池和NiCd蓄电池一样,具有圆筒形(AAA、AA、A、C、D、F和M)、方形和纽扣形电池。这些NiMH蓄电池可装配成多种电池组,可以满足电子设备日益增长的便携性需求。例如,NiMH蓄电池非常适合于大电放逐电需求,如像便携式打印机、医疗设备,远程通讯设备,笔记本电脑和数码AV机器(数码相机、数码摄像、数码音频播放机)等,都可应用NiMH蓄电池。原来,NiMH蓄电池实用化比锂离子蓄电池LIB先行一步,于是在移动通讯领域本也是NiMH蓄电池的天下。但是,LIB实用化以后,情况发生逆转,后面将仔细介绍。
NiMH蓄电池由于吸躲氢的合金MH比重很大,导致Wh/kg仅为60左右;尽管NiMH的Wh/Liter可达到300乃至400,W/kg高达160以上,但它的应用远景限定在不严格计较重量的重负载应用领域,例如混合电动车辆(hybrid electric vehicles)、电动车辆、军事野营、抗灾(水灾、地震等)现场用电等方面将发挥出不可替换的重要作用。由于NiMH蓄电池的特性决定它能和太阳能电池板、双电荷层电容器EDLC、便携式风力发电机等构成复合系统。例如混合电动车辆的汽油发动机功率较小,只限于行驶时作为动力,而启动和爬坡时借助于NiMH蓄电池与双电荷层电容器提供电能驱动电动机实现加速;将来的电动车辆主要是依靠大型NiMH蓄电池组和大型双电荷层电容器组复充电方式,加速时由电容器提供脉冲大电流驱动;太阳能电池板和NiMH蓄电池组合供电系统,白天依靠太阳能电池发电为NiMH蓄电池充电,夜间由蓄电池放电;风力发电机和NiMH蓄电池组合供电系统,有风时发电机为NiMH蓄电池充电,无风时由NiMH蓄电池放电。
LIB蓄电池的Vdc=3.6V,再充电次数可达300~400次,能量密度高达287Wh/Liter,堪称是目前世界上最轻便的蓄电池。尽管它在充放电时,都要求一套精密的控制设施保证安全性,而且价格不菲,对于追求轻便和使用效率的移动通讯手机用户,依然是对LIB蓄电池情有独钟。在移动通讯领域,LIB蓄电池终回要完全取代NiCd和NiMH蓄电池。
总之,NiCd、NiMH和LIB蓄电池由于各自机理和特性不同,各有其自己的应用领域,今后将会在不同的领域协调发展。
-
目前全球正面临着能源、环境、水资源、粮食等方面的危机.(1)目前人类通过化学反应获得的能量大多来自2024-08-17
-
化学反应中通常伴随着能量变化,下列说法中错误的是( )A.太阳能、生物质能、氢能都属于可再生能源B2024-08-17
-
高温条件下二氧化碳与焦炭发生化学反应生成一种新的可燃气体的化学方程式2024-08-17
-
化学反应与能量章节重点知识2024-08-17
-
目前全球正面临着能源、环境、水资源、粮食等方面的危机。⑴目前人类通过化学反应获得的能量大多来自于煤2024-08-17
-
燃烧液化石油气为炒菜提供能量发生什么化学反应2024-08-17
-
怎么把液化气中的硫醇或硫醚通过化学反应去掉硫味(煤气味)2:怎么把液体转换成燃烧气体(高分)2024-08-17
-
目前全球正面临着能源、环境、水资源、粮食等方面的危机。⑴目前人类通过化学反应获得的能量大多来自于煤2024-08-17
-
下列物质中,不能与焦炭发生化学反应的是 A. 氧气 B. 一氧化碳 C. 二氧化碳 D. 氧化铜2024-08-17
-
4.. 下列关于化学反应说法中不正确的是( ) A.化学反应的特征是有新物质生成 B.任何化学反应都伴随着热量2024-08-17
-
以石英砂、焦炭、水、MnO2和浓盐酸来制取纯硅,写出有关化学反应方程式2024-08-17
-
用100度的热源持续加热焦炭会发生什么化学反应2024-08-17
-
高分急求产生氢气的所有化学反应2024-08-17
-
光合作用中的化学反应有些什么?2024-08-17
-
将煤转化为水煤气是通过化学方法将煤转化为洁净燃料的方法之一。煤转化为水煤气的主要化学反应为:C(s)+2024-08-17