首页 > 专家说

结合航天技术,谈谈有效利用太阳能的举措

来源:江南娱乐-意甲尤文图斯亚
时间:2024-08-17 08:08:47
热度:

结合航天技术,谈谈有效利用太阳能的举措【专家解说】:太阳能利弊:
优点:?
(1)普遍:太阳光普照大地,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采

【专家解说】:太阳能利弊: 优点:? (1)普遍:太阳光普照大地,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,且勿须开采和运输。? (2)无害:开发利用太阳能不会污染环境,它是最清洁的能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。? (3)巨大:每年到达地球表面上的太阳辐射能约相当于130万亿t标煤,其总量属现今世界上可以开发的最大能源。 (4)长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。? 缺点:? (1)分散性:到达地球表面的太阳辐射的总量尽管很大,但是能流密度很低。平均说来,北回归线附近,夏季在天气较为晴朗的情况下,正午时太阳辐射的辐照度最大,在垂直于太阳光方向1平方米面积上接收到的太阳能平均有1000W左右;若按全年日夜平均,则只有200W左右。而在冬季大致只有一半,阴天一般只有1/5左右,这样的能流密度是很低的。因此,在利用太阳能时,想要得到一定的转换功率,往往需要面积相当大的一套收集和转换设备,造价较高。? (2)不稳定性:由于受到昼夜、季节、地理纬度和海拔高度等自然条件的限制以及晴、阴、云、雨等随机因素的影响,所以,到达某一地面的太阳辐照度既是间断的,又是极不稳定的,这给太阳能的大规模应用增加了难度。为了使太阳能成为连续、稳定的能源,从而最终成为能够与常规能源相竞争的替代能源,就必须很好地解决蓄能问题,即把晴朗白天的太阳辐射能尽量贮存起来,以供夜间或阴雨天使用,但目前蓄能也是太阳能利用中较为薄弱的环节之一。? (3)效率低和成本高:目前太阳能利用的发展水平,有些方面在理论上是可行的,技术上也是成熟的。但有的太阳能利用装置,因为效率偏低,成本较高,总的来说,经济性还不能与常规能源相竞争。在今后相当一段时期内,太阳能利用的进一步发展,主要受到经济性的制约。? 太阳能利用中的经济问题:? 第一,世界上越来越多的国家认识到一个能够持续发展的社会应该是一个既能满足社会需要,而又不危及后代人前途的社会。因此,尽可能多地用洁净能源代替高含碳量的矿物能源,是能源建设应该遵循的原则。随着能源形式的变化,常规能源的贮量日益下降,其价格必然上涨,而控制环境污染也必须增大投资。 第二,我国是世界上最大的煤炭生产国和消费国,煤炭约占商品能源消费结构的76%,已成为我国大气污染的主要来源。大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。能源问题是世界性的,向新能源过渡的时期迟早要到来。从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。 第一个空间太阳电池载于1958年发射的Vangtuard I,体装式结构,单晶Si衬底,效率约10%(28℃)。到了1970年代,人们改善了电池结构,采用BSF、光刻技术及更好减反射膜等技术,使电池的效率增加到14%。在70年代和80年代,地面太阳电池大约每5.5年全球产量翻番;而空间太阳电池在空间环境下的性能,如抗辐射性能等得到了较大改善。由于80年代太阳电池的理论得到迅速发展,极大地促进了地面和空间太阳电池性能的改善。到了90年代,薄膜电池和Ⅲ-Ⅴ电池的研究发展很快,而且聚光阵结构也变得更经济,空间太阳电池市场竞争十分激烈。在继续研究更高性能的太阳电池,主要有两种途径:研究聚光电池和多带隙电池。 × 空间太阳电池主要性能 电池效率 由于太阳电池在不同光强或光谱条件下效率一般不同,对于空间太阳电池一般采用AM0光谱(1.367KW/㎡),对于地面应用一般采用AM1.5光谱(即地面中午晴空太阳光,1.000 KWm-2)作为测试电池效率的标准光源。太阳电池在AM0光谱效率一般低于AM1.5光谱效率2~4个百分点,例如一个AM0效率为16%的Si太阳电池AM1.5效率约为19%)。 ◎ 25℃,AM0条件下太阳电池效率 电池类型 面积(cm2) 效率(%) 电池结构 一般Si太阳电池 64cm2 14.6 单结太阳电池 先进Si太阳电池 4cm2 20.8 单结太阳电池 GaAs太阳电池 4cm2 21.8 单结太阳电池 InP太阳电池 4cm2 19.9 单结太阳电池 GaInP/GaAs 4cm2 26.9 单片叠层双结太阳电池 GaInP/GaAs/Ge 4cm2 25.5 单片叠层双结太阳电池 GaInP/GaAs/Ge 4cm2 27.0 单片叠层三结太阳电池 ◎ 聚光电池 GaAs太阳电池 0.07 24.6 100X GaInP/GaAs 0.25 26.4 50X,单片叠层双结太阳电池 GaAs/GaSb 0.05 30.5 100X,机械堆叠太阳电池 空间太阳电池在大气层外工作,在近地球轨道太阳平均辐照强度基本不变,通常称为AM0辐照,其光谱分布接近5800K黑体辐射光谱,强度1353mW/cm2。因此空间太阳电池多采用AM0光谱设计和测试。 空间太阳电池通常具有较高的效率,以便在空间发射的重量、体积受限制的条件下,能获得特定的功率输出。特别在一些特定的发射任务中,如微小卫星(重量在50~100公斤)上应用,要求单位面积或单位重量的比功率更高。 抗辐照性能 空间太阳电池在地球大气层外工作,必然会受到高能带电粒子的辐照,引起电池性能的衰减,主要原因是由于电子或质子辐射使少数载流子的扩散长度减小。其光电参数衰减的程度取决于太阳电池的材料和结构。还有反向偏压、低温和热效应等因素也是电池性能衰减的重要原因,尤其对叠层太阳电池,由于热胀系数显著不同,电池性能衰减可能更严重。 × 空间太阳电池的可靠性 光伏电源的可靠性对整个发射任务的成功起关键作用,与地面应用相比,太阳电池/阵的费用高低并不重要,因为空间电源系统的平衡费用更高,可靠性是最重要的。空间太阳电池阵必须经过一系列机械、热学、电学等苛刻的可靠性检验。 Si太阳电池 硅太阳电池是最常用的卫星电源,从1970年代起,由于空间技术的发展,各种飞行器对功率的需求越来越大,在加速发展其他类型电池的同时,世界上空间技术比较发达的美、日和欧空局等国家,都相继开展了高效硅太阳电池的研究。以日本SHARP公司、美国的SUNPOWER公司以及欧空局为代表,在空间太阳电池的研究发展方面领先。其中,以发展背表面场(BSF)、背表面反射器(BSR)、双层减反射膜技术为第一代高效硅太阳电池,这种类型的电池典型效率最高可以做到15%左右,目前在轨的许多卫星应用的是这种类型的电池。 到了70年代中期,COMSAT研究所提出了无反射绒面电池(使电池效率进一步提高)。但这种电池的应用受到限制:一是制备过程复杂,避免损坏PN结;二是这样的表面会吸收所有波长的光,包括那些光子能量不足以产生电子-空穴对的红外辐射,使太阳电池的温度升高,从而抵消了采用绒面而提高的效率效应;三是电极的制作必须沿着绒面延伸,增加了接触的难度,使成本升高。 80年代中期,为解决这些问题,高效电池的制作引入了电子器件制作的一些工艺手段,采用了倒金子塔绒面、激光刻槽埋栅、选择性发射结等制作工艺,这些工艺的采用不但使电池的效率进一步提高,而且还使得电池的应用成为可能。特别在解决了诸如采用带通滤波器消除温升效应以后,这类电池的应用成了空间电源的主角。 虽然很多工艺技术是由一些研究所提出,但却是在一些比较大的公司得到了发扬光大,比如倒金子塔绒面、选择性发射结等工艺是在澳大利亚新南威尔士大学光伏研究中心出现,但日本的SHARP公司和美国的SUNPOWER公司目前的技术水平却为世界一流,有的技术甚至已经移植到了地面用太阳电池的大批量生产。 为了进一步降低电池背面复合影响,背面结构则采用背面钝化后开孔形成点接触,即局部背场。这些高效电池典型结构为PERC、PERL、PERT、PERF[1],其中前种结构的电池已经在空间获得实用。典型的高效硅太阳电池厚度为100μm,也被称为NRS/BSF(典型效率为17%)和NRS/LBSF(典型效率为18%),其特征是正面具有倒金子塔绒面的选择性发射结构,前后表面均采用钝化结构来降低表面复合,背面场采用全部或局部背场。实际应用中还发现,虽然采用局部背场工艺的电池要普遍比NRS/BSF的电池效率高一个百分点,但通常局部背场的抗辐照能力比较差。 到了上世纪90年代中期,空间电源工程人员发现,虽然这种类型电池的初期效率比较高,但电池的末期效率比初期效率下降25%左右,限制了电池的进一步应用,空间电源的成本仍然不能很好地降低。 为了改变这种情况,以SHARP为首的研究机构提出了双边结电池结构,这种电池的出现有效地提高了电池的末期效率,并在HES、HES-1卫星上获得了实际应用。 另外研究人员还发现,卫星对电池阵位置的要求比较苛刻,如果太阳电池阵不对日定向或对日定向差等都会影响到卫星电源的功率,这在一定程度上也限制了卫星整体系统的配置。比如空间站这样复杂的飞行器,有的电池阵几乎不能完全保证其充足的太阳角,因而就需要高效电池来满足要求。虽然目前已经部分应用了常规的高效电池,但电池的高的α吸收系数、有限的空间和重量的需要使其仍然不能满足空间系统大规模功率的需要。传统的电池结构仍然受到很大程度的限制。在这种情况下,俄罗斯在研究高效硅电池初期就侧重于提高电池的末期效率为主,在结合电池阵研究方面提出了双面电池的构想并获得了成功,真正做到了高效长寿命和低成本。 GaAs太阳电池 随着空间科学和技术的发展,对空间电源提出了更高的要求。80年代初期,前苏联、美国、英国、意大利等国开始研究GaAs基系太阳电池。80年代中期,GaAs太阳电池已经用于空间系统,如1986年前苏联发射的“和平号”空间站,装备了10KW的GaAs太阳电池,单位面积比功率达到180W/㎡。8年后,电池阵输出功率总衰退不大于15%。 GaAs基系太阳电池经历了从LPE到MOVPE,从同质外延到异质外延,从单结到多结叠层结构发展变化,其效率不断提高。从最初的16%增加到25%,工业生产规模年产达100KW以上,并在空间系统得到广泛的应用。更高的效率减小了阵列的大小和重量,增加了火箭的装载量,减少火箭燃料消耗,因此整个卫星电源系统的费用更低。 薄膜太阳电池 为适应空间应用需求,国际上纷纷制订各自的薄膜太阳电池计划(如NASA,主要目标在于提高比功率和降低发射装载容量),提出解决措施: (1)研制超轻柔性衬底薄膜太阳电池; (2)研制多结薄膜太阳电池。目前,国际发展趋势主要涉及非晶硅(a-Si:H)太阳电池、铜铟(镓)硒(CuInGaSe2)太阳电池和碲化镉(CdTe)太阳电池。经过数年的努力,其效率达到15~20%(AM0)。 另一方面,为展开柔性薄膜太阳电池的研制(展开式、折叠式、套桶式、卷廉式)的设计与应用提供可能。自90年代后期,国外已开展了以聚合物为衬底薄膜太阳电池的研制,并取得一定的进展。薄膜太阳电池是获得高效率、长寿命、高可靠、低成本的重要途径之一。主要包括:a-Si及其合金、CuInSe2 及其合金、以及CdTe三种材料的薄膜太阳电池。 聚光太阳电池 一般认为,现代聚光PV开始于1970年代末悉尼国家实验室,采用了点聚焦非涅耳透镜硅电池双轴跟踪结构,随后并研制了几个原型。在1980年代,很多研究机构进行了一系列成功的实验,在聚光技术方面取得了突破性进展,如非涅耳透镜、棱形玻璃盖片等。在1990年代中期,线聚焦Fresenel透镜聚光阵技术已经成功地用于SCARLET太阳电池阵,电池为GaInP/GaAs/Ge三结电池,聚光阵的功率密度大于200 W/㎡,比功率大于45 W/kg。线聚焦Fresenel透镜聚光阵已经用于DEEPSPACE-1。 由于三结GaAs太阳电池有很好的高温特性(为高电压低电流器件),通过聚光将显著提高电池电流输出,特别在实现高倍聚光后,可获得更高的功率输出。因此,以三结砷化镓太阳电池为主要部件的聚光太阳电池以其高效率(可达到40%以上)、高温性能好(工作温度每升高1?C性能仅下降0.2%,可在200?C情况下正常工作,聚光倍数可达500倍以上)等特点被国际公认为最有发展前途和最具商用价值的新一代太阳能器件。
Baidu
map