二十万年如一日看管核废料,依靠细菌行不行?
二十万年如一日看管核废料,依靠细菌行不行? 还没有过去的2016年又一次被称作了“史上最热年”,截止8月,已经连续16个月刷新了地球的高温纪录。这么热的
还没有过去的2016年又一次被称作了“史上最热年”,截止8月,已经连续16个月刷新了地球的高温纪录。这么热的天气,难免引起科学家们对冰川融化以及海平面上升的担忧,于是一切又回到了一个老问题——如何控制温室气体。
除了不断涌现并且五花八门的“固碳”方法外,寻找替代石化燃料的新能源也是一条必循之路。让人又爱又怕的核能则始终是其中一个选项。除了零排放、占地小和效率高等有点外,核能(裂变能)最为人诟病的无非是安全性和核废料。
关于核废料,目前采取的主要方法是深埋,而考虑到核废料超长的半衰期(最长的元素超过20万年),以及现有建筑材料相对较低的寿命,公众的担心也不无道理。
近日,瑞士洛桑联邦理工学院(EPFL)的研究人员可能找到了一条全新的核废料看管途径。他们发现,某些自然存在的细菌可以消耗核废料库中可能造成危险的氢气,而这将会有助于我们更好地处置核废料。
EPFL的科学家们发现了一个在核废料处置领域意想不到的盟友——细菌。他们研究的主要对象是一种由7种细菌组成的菌落,自然条件下这些细菌在地下数百米的岩层中生存,而这些岩层恰恰就是瑞士核废料的填埋处。
他们发现,只需简单调整一下核废料库的设计就能使这些细菌化敌为友,它们可以消耗积聚在钢罐上的氢气使其安全性增加。因为如果不对这些氢气加以控制,累积的气体压力具有破坏主体岩石完整性而造成核泄漏的隐患。这项研究成果于今年10月14日发表在《Nature Communications》杂志上。
核废料的放射性需要大约20万年才能恢复到正常水平——自然界中天然存在的铀的放射水平。因此,以往大多数关于如何长期又安全地处置核废料的研究都着眼于地质学,即寻找合适的掩埋岩层。然而,所有以往研究都忽略了一个关键因素,这也是本项研究的着眼点:生物学。
地下的生命
细菌随处可见,甚至是在数百米的地下。根据该研究论文的通讯作者里兹兰·伯尼尔·拉特玛尼(Rizlan Bernier-Latmani)的说法,这些细菌会饥不择食地扑向任何可用的能源。
“在泰利山岩石实验室(Mont TerriRock Laboratory)地下300米的水样中,我们发现了一个有着封闭食物链的菌群,其中有许多未曾谋面的细菌。原始条件下,位于该菌落食物链底部的细菌从主体岩石中的氢和硫酸盐中获取能量,在这基础上,这些底层细菌又为食物链中更高级的细菌提供了能量。”拉特玛尼这样解释此菌落的生存模式。
深埋在500米地下的核废料
然而核废料的加入,改变了这种状况。储存核废料的钢罐要被玻璃化并密封,再用一层厚厚的自密封膨润土包围,埋在数百米地下——地质稳定的硬泥岩层(Opalinus Clay),放射性废料与周围环境隔绝。但是钢罐不可避免地会被腐蚀,这就导致了氢气的产生。
首页 下一页 上一页 尾页-
北京市节能减排财政政策综合示范实施方案获批2024-08-16
-
我国纺织行业节能减排形势严峻2024-08-16
-
南非铸造产业向节能减排方向发展2024-08-16
-
高压变频器将成为市场节能减排主力浅析2024-08-16
-
国家审计署:44个节能减排项目未达标2024-08-16
-
节能减排急需调整贸易结构2024-08-16
-
山东《2014-2015年节能减排低碳发展行动实施方案》(全文)2024-08-16
-
湖北省以节能减排倒逼产业转型2024-08-16
-
《节能减排低碳发展行动方案》频出台 各省目标不同2024-08-16
-
六大重点工程助力安徽合肥节能减排2024-08-16
-
京津冀融资300亿元用于节能减排2024-08-16
-
美专家发现细菌生成甲烷的关键机制2024-08-16
-
林伯强:节能减排或成能源互联网领域最快实现内容2024-08-16
-
林伯强:节能减排或成能源互联网领域最快实现内容2024-08-16
-
财政部:节能减排补助资金专款专用 不得挪用2024-08-16