首页 > 行业资讯

山区水电站的接地设计与降阻措施探讨

来源:江南娱乐-意甲尤文图斯亚
时间:2016-06-15 21:56:53
热度:

山区水电站的接地设计与降阻措施探讨  1、引言   对于大多数山区水电站来说,一般都存在着土壤电阻率偏高,场地狭小,土层薄且土质大多为风化石、砂子,有的甚致根本沒有土层,完全为石头

  1、引言 

  对于大多数山区水电站来说,一般都存在着土壤电阻率偏高,场地狭小,土层薄且土质大多为风化石、砂子,有的甚致根本沒有土层,完全为石头。土壤电阻率高达2000--3000Ω.m,有的甚致高达5000--8000Ω.m,因而给水电站的接地造成了许多困难,使许多山区水电站接地电阻严重偏高,如浙江某座装机达40000kw的水电站接地电阻高达10Ω;还有一些中小型水电站的工频接地电阻高达数十欧,或上百欧。山区水电站所在的地方,往往是雷电活动强烈的地方[1],由于水电站的接地电阻偏高,对防雷造成了极为不利的影响。如避雷器动作后由于残压叠加上接地电阻上的压降后,会使加到发电机等电气设备上的电压高而危及发电机等电气设备的绝缘。或者当雷电流入地时,电气设备外壳或接地引下线上产生较高的“反击” 

  过电压而向二次线产生反云。同时也会在雷电流入地时冲击电位升高,产生严重的冲击电而干扰而影响微机保护、综合自动化系统的安全运行。近年来因为接地不良产生的雷电打坏主设备、打坏微机保护等控制设备的事故在中小型水电站时有发生,因而应对中小型水电站的接地问题引起充分的重视。进行认真的研究和探讨,找到有效降低山区小电站接地装置接地电阻的措施,做好山区水电站接地的降阻改造工作,保证水电站安全运行。 

  2、山区水电站接地电阻偏高的原因分析 

  山区水电站一般接地电阻偏高的原因主要是以下原因造成的: 

  (1)土壤电阻较高造成,山区的土壤电阻率一般都偏高,特别是南方山区水电站的土壤电阻率一般都在2000--3000Ω.m,严重的甚致高达5000Ω.m。如我们在浙江某山区水电站四周测量土壤电阻率,低的为800Ω.m,大多在2000Ω.m.高的地方甚致达6000Ω.m。因接地装置的接地电阻与土壤电阻率成正比,接地装置面积一定时,土壤电阻率愈高,接地装置的接地电阻也就愈高,降阻难度也就愈大。 

  (2)土层薄,地质条件差,山区水电站处的土质一般为风化石土壤,或碎石土壤,土层薄,一般不足30cm,大多地方为岩石沒有土层,由于土层薄,就影响水平接地体和垂直接地体的埋深,经检查山区水电站接地装置的水平接地体的埋深一般都不到30cm,有的浮在地表;由于土层薄,垂直接地体打不下去,其深度一般都不到50cm。由于接地体浮在地表,一方面由于上层土壤土质松散,接地体不能与大地紧密接触,造成接触电阻大,且因土壤干湿度易变化,而造成接地体的接地电阻不稳定。另一方面由于上层土壤含氧量高,接地体易发生吸氧腐蚀,而使接地体与周围土壤之间的接触电阻增大。同时,由于腐蚀还会造成接地网裂解使部分设备失去接地。 

  (3)场地狭小,使接地网面积偏小,一般山区水电站都在山谷中,场地狭小,这就使水电站的接地网严重偏小。有的甚致沒有地方建接地网,如浙冮某水电站,由于受场地限制,发电机厂房就建在山洞内,户外110kv开关站则小得可怜,不到1000m2,这就给接地降阻带来非常大的难题,因为一般情况下,接地装置的工频接地电阻由下式决定: 

  (1)式中:R—接地装置的工频接地电阻,Ω;ρ—土壤电阻率,Ω.m;s—地网面积,m2。

  从(1)式可以看出接地装置的接地电阻,与土壤电阻率ρ成正比,与接地网的面积的开方值成反比,山区水电站由于土壤电阻率高,土质差,土层薄,接地体埋深不够,地网面积小,这就是造成接地电阻偏高的主要原因。 

  3、山区水电站的接地设计与降阻措施 

  (1)设置水下地网对于山区水电站,沒有大面积的陆地建设地网,但一般都有可以利用的水域,特别是一些水电站一般都有用某蓄水的水库,可以在水库设置水下接地网。设置水下地网前应测试出水电电阻率和水库的水面面积,以及丰水期和枯水期的水域面积,计算出接地电阻的最大值和最小值。水下接地网对降低接地电阻往往是非常有效的。水下地网的网孔大小一般以15m15m为好。水下地网应选用Ф14热镀锌的圆钢为好。在施工时可在岸上焊好后沉到水底,有条件时可在水库的周边可以设置岸边接地网,岸边地网应埋在泥土内并用垂直接地极固定。 

  (2)对于河道式水电站或沒有大型水库的水电站,可能沒有大的水域设置水下地网,但此时可以沿河道向上、下游在2000m范围之内在河道的两边设置河岸接地网。河岸接地网因为河流常年湿度较大,土壤电阻率一般较低,对降接地电阻非常有效,我们利用河岸接地网成功地改造了许多水电厂和变电所的接地都取得了很好的降阻效果。河岸接地网一般应在20—30m设置一道跨河横线同时起到水下地网的作用。在河岸每10—15m设置垂直接地极进行固定。 

  (3)充分利用自然接地体因为在中小型水电站中一般都有大量的自然接地体可以利用,比如水坝、厂房、引水管等,最好是在设计时就首先考虑到接地问题,把这些自然接地体可靠的连接为一可靠的整体,并预留连接点。在设计自然接地体时对于自然接地体的底部和周边可以用导电水泥进行处理以加强自然接地体与周围土壤或山岩的接触。另外在水泥道路的底部也可用导电水泥进行处理以加强其降阻效果。 

  (4)在合适的地方设置外延接地,在水电站2000m范围以内认真进行勘探、测量土壤电阻率,找土壤电阻率较低的地方做外延接地。对外延接地要经严格的跨步电压计算,防止外延处跨步电压伤人。且外延接地的场所要选择在不易被破坏的地方。要有很好的保护措施,防止在运行时被破坏掉。外延地网与主地网的联接要可靠,要采取多条联接线联接。 

  (5)利用降阻剂和其它的降阻材料进行降阻,特别是对外延接地可施加降阻剂进行降阻,但在降阻剂的使用时一定要选择降阻性能好,无腐蚀,性能稳定的降阻剂进行降阻。比如我们就曾使用GPF-94高效膨润土降阻剂结合外延接地成功地解决了许多大、中型接地装置的降阻问题,其中就有一些小型化的城市变电所的接地,都取得了较好的降阻效果。另外,对一些电气设备的基础和与变电所联接的道路,或变电所的部分硬化部分的底部可以采用导电水泥进行降阻,道路表面为了提高跨步电压允许值,可用普通水泥,或者铺沥清进行处理。 

  (6)采取综合降阻措施山区水电站由于其接地电阻偏高,采取单一的降阻措施往往难以达到预期的降阻目标,这时需要对现场地形、地势及土壤电阻率等现场条件进行综合分析,采取综合的降阻措施。比如可以采取外延加降阻剂、水下地网、河岸地网和自然接地体利用等多种降阻措施联合应用,以达到有效的,大幅度的降低接地电阻的目的。

  如我们在浙江某水电站就曾采用水下地网、河岸地网、外延接地加降阻剂联合降阻法把水电站的接地电阻从十多欧降到1欧左右。

   4、结束语 

  山区水电站由于土壤电阻率高,土质差,土层薄,接地体埋深不够,地网面积小,这就是造成接地电阻偏高的主要原因,因而进行山区水电站的按地设计时要对现场地形、地势及土壤电阻率等现场条件进行综合分析,通过认真的技术经济分析,对水电站的接地进行优化设计,根据现场实际条件可采多水下地网、河岸地网、外延接地和降阻剂等多种降阻措施进行降阻处理。也可采取复合降阻措施进行降阻。对厂内地网要改善其地电位分布,防止地电位干扰,以保证水电站的安全稳定运行。

Baidu
map