首页 > 行业资讯

LED照明回路中恢复二极管的选择方案

来源:江南娱乐-意甲尤文图斯亚
时间:2015-03-06 16:37:59
热度:

LED照明回路中恢复二极管的选择方案在全球能源短缺的背景下,节能己成为全球热议的话题。2011年我国耗电总量46928亿kWh,其中照明用电占12%,约5631亿度,可见在照明领域

在全球能源短缺的背景下,节能己成为全球热议的话题。2011年我国耗电总量46928亿kWh,其中照明用电占12%,约5631亿度,可见在照明领域的节能有着重要的效益。照明节能的重点在于提高光源的光效和降低灯具本身损耗,LED作为新一代绿色照明光源,具有环保、节能、寿命长、体积小等特点,必将是21世纪代表性的新型光源。   LED的亮度与通过它的正向电流成正比。从LED的伏安特性可知,当采用恒压供电时,电源电压的波动会引起LED电流较大的变化;另外LED伏安特性有具有负温度系数的特点,工作过程中随温度的升高,亮度会减小。实际应用时,一般采用多只LED串联方式,不同厂家或同一厂家的LED离散性较大,为了保证串联LED有相同的亮度,延长LED寿命,恒流驱动是理想的选择。   文章针对实际应用中的一种3W白色LED恒流驱动电路,由于续流回路恢复二极管的选用问题,造成器件发热,无法满足设计要求,通过器件工作原理的仔细分析,找到了问题并得到了解决。   1问题引出   LED恒流驱动电路一般由PWM芯片、MOSFET管、电感及续流恢复二极管构成。图1为一种实际应用中的电路原理图,恒流驱动由PWM芯片U1(HV9910B)、MOSFET管Q1、3W白色LEDD3、恢复二极管D2、电感L3、工作频率选择电阻R1、电流采样电阻R2、R3、R4及滤波电容C6~C9组成。   设计要求恒流电流为630mA,D2设计初期选用了快速恢复二极管FR207,通电工作时,发现LED回路电流约200mA,LED亮但亮度不够,此时D2、R2、R3、R4、Q1管发热严重。   2工作原理   2.1HV9910B特点及应用领域   HV9910B是Supertex公司在2007年推出的一种高效的PWM控制的LED驱动器,其供电电压范围为DC8V~DC450V,开关频率高达300kHz,可以外接电阻设置。LED由恒流驱动,输出电流由数mA至1A。特点如下:   ●输入电压范围为DC8V~DC450V;   ●输出电流由几mA到1A以上,既能驱动小功率LED,也能驱动大功率LED;   ●可以方便地组成降压式、升/降压式架构,以满足不同供电电压的需求;   ●它可以驱动1个LED到上百个LED;   ●转换效率高,可达90%;   ●组成的驱动器电路简单,外围元器件少,不仅占PCB板面积小,并且生产成本低;   ●内部有能输入DC450V高压、输出7.5V的线性稳压器,无须外接降压电阻,使电路更简单,并可输出作模拟调光电路的电流;   ●有两种工作模式:恒定频率模式及恒定关断时间模式;   ●有两种调光方式:模拟调光方式和PWM调光方式;   ●输出驱动电流大小用一个外设电阻RCS设定。   8引脚的HV9910B的管脚定义和功能如表1所示。   2.2工作原理   图2是HV9910B的内部框图及典型应用电路。直流电压直接加于VIN脚,当VDD脚超过开启阈值后,栅极驱动器工作,GATE脚输出电压使MOSFET管导通并运行在开关状态,MOSFET管的源极接电流检测电阻RCS,其电压加于CS脚,当该电压超过峰值电流检测阈值时,栅极驱动信号终止,MOSFET管截止。由于阈值电压内部设定为250mV,所以,MOSFET管峰值电流由检测电阻RCS决定。   外接电路说明:Q代表MOSFET管;D代表续流回路恢复二极管;L代表回路电感;ROSC代表频率设定电阻;LED代表发光二极管。   由于MOSFET管工作在开关状态,导通时,电感充电电流上升;截止时,电感放电电流减小。显然,电流到达峰值的时间与电感选用有关系。严格地说,经过LED电流是脉动起伏的,不是直流,其平均值与电感值有关。根据电感电流是否连续可以分成如下三种模式,见图3。   这三种工作模式各有优缺点,按实际情况进行选用。a模式电流变化范围小,具有较小的磁滞损耗,一般工作频率较高,功率管的开关损耗大,电源电压变化对应的电流精度高;c模式电流变化大,具有较大的磁滞损耗,一般工作频率较低,功率管的开关损耗小,电源电压变化对应的电流精度低;b模式介于这两种模式之间,同时具有这两种模式的优缺点。对应市电应用的场合,负载功率高时,建议选用a模式,负载功率适中可选用b模式,负载功率低则可选用c模式。文章中实际电路选用了a模式。   3问题分析   图1中采用恒定频率的工作模式,电流采样电阻RCS(由R2、R3、R4并联组成),R1电阻阻值为100kΩ,工作频率为200kHz。   通电后,U1的GATE管脚输出高电平,Q1导通,+24V电源电流经滤波器件后到U1管脚1,再经D3、L3、Q1、RCS流回24V地,此时是电感L3储能过程;U1通过电流采样电阻RCS检测其两端的电压,当电压达到250mV时,U1的GATE管脚输出低电平,关断Q1。回路中由于电感L3存储了电能,当Q1关断后,L3将释放其储能,释放回路为:电流从L3的一端流出,经D2、D3,最后回到L3的+端,维持D3继续发光。   3.1恢复二极管恢复特性   二极管和一般开关的不同在于“开”与“关”由所加电压的极性决定,而且“开”态有微小的压降,“关”态有微小的电流。当电压由正向变为反向时,电流并不立刻成为-I0,而是在一段时间ts内反向电流始终很大,二极管并不关断;经过ts后,反向电流才逐渐变小,再经过tf时间,二极管的电流才成为-I0,二极管关断,如图4所示。ts称为储存时间,tf称为下降时间,trr称为反向恢复时间,以上过程称为反向恢复过程,这实际上是由电荷存储效应引起的。反向恢复时间就是存储电荷耗尽所需要的时间。   图5是引用超快速恢复二极管ES1D的使用手册中的关断特性曲线和测试电路。从图中可以看出,ES1D反向恢复时间35ns,比普通二极管的恢复时间要短得多,同时ts也要小。   从图4、5可知,由于反向恢复过程存在,当二极管的两端电压由正向变为反向时,二极管并不马上关断,经过trr后才真正关断。   3.2MOSFET管导通特性   图6是MOSFET管的开关时间测试电路与波形。   3.2.1开启时间ton   当VGS由低电平变为高电平时,MOSFET管导通,VDS由高电平变为低电平。MOSFET管从截止到饱和所需的时间就是开启时间,包括VGS导通延迟时间td(on)和VDS的导通时间tr。即   ton=td(on)+tr   3.2.2关闭时间toff   当VGS由高电平变为低电平时,MOSFETF管截止,VDS由高电平变为低电平。MOSFET管从截止到饱和所需的时间就是关断时间。包括VGS关断延迟时间td(off)和VDS的关断时间tf。即   toff=td(off)+tf   通常情况下,toff>ton,开关时间一般在纳ns数量级,高频应用时需考虑。   LED照明回路中恢复二极管的选择方案   3.3问题原因   由于恢复二极管trr的客观存在,图1中电路的实际工作过程如下:   工作阶段:U1中GATA输出高电平,经过ton时间后,Q1导通,D2关断,24V电源从正流出,经滤波电路后到U1管脚1,再经D3、L3、Q1、RCS流回电源负端。此时L3充电储能。   续流阶段:U1中GATA输出低电平,经过toff时间后,Q1关断,D2正向导通,电流从L3的+端流出,经D2、D3,最后回到L3的一端,电感释放储能。   纯消耗阶段:Q1导通,D2处于trr阶段;24V电源从正流出,经D2(D2反向导通),Q1、RCS回到电源负。RCS阻值为0.4Ω,此时回路电流很大(24/0.4=60A),且能量全部转换为热能,消耗在D2、R2、R3、R4、Q1管上,引起器件的发热。   文章中电路工作是工作阶段、续流阶段、纯消耗阶段三种阶段周而复始的循环过程。纯消耗阶段越短,电流流经D3回路的时间越长,装置效率越高。   文章中电路初期设计中,选用了快速恢复二极管FR207,trr为150ns,当MOSFET管工作频率为200kHz时,即周期为5μs,根据图3中的描述,电感电流工作在连续的模式,此时在一个周期中,占空比略大于0.5,也就是说trr为工作阶段的的6%(0.15/2.5=0.06),另外纯消耗阶段回路电流(60/0.63≈10)约为其他阶段的10倍,正是FR207的trr太大造成了器件发热,效率低,达不到设计要求。   3.4问题的解决   将FR207更换为ES1D后,纯消耗阶段缩短了4倍,问题解决。实际上将ES1D更换为肖特基二极管SS1100效果更好,用测试设备测试FR20、ES1D、SS1100的恢复时间,结果SS1100最短(约为10ns),同时验证了本章的分析。   4结论   在由PWM芯片实现的LED恒流驱动电路中,续流回路二极管应该选用trr短的超快速恢复二极管,当电压低时,尽量选用肖特基二极管。通常情况,我们常常会忽略掉纯消耗阶段的存在,真正理解了二极管的反向恢复特性,才能设计出合理的电路。另外当二极管在较高频率当作“开关”使用时,如果反向脉冲的持续时间比trr短,则二极管在正、反向都可导通,起不到开关作用,即二极管的单向导电性在一定的频率范围内是正确的。
Baidu
map