基于欧姆龙PLC的风力发电机组变桨距系统
基于欧姆龙PLC的风力发电机组变桨距系统1引言 随着风电技术的不断成熟与发展,变桨距风力发电机的优越性显得更加突出既能提高风力机运行的可靠性,又能保证高的风能利用系数和不断优化的
1引言
随着风电技术的不断成熟与发展,变桨距风力发电机的优越性显得更加突出既能提高风力机运行的可靠性,又能保证高的风能利用系数和不断优化的输出功率曲线。采用变桨距机构的风力机可使叶轮重量减轻,使整机的受力状况大为改善,使风电机组有可能在不同风速下始终保持最佳转换效率,使输出功率最大,从而提高系统性能。随着风电机组功率等级的增加,采用变桨距技术已是大势所趋。目前变桨执行机构主要有两种液压变桨距和电动变桨距,按其控制方式可分为统一变桨和独立变桨两种。在统一变桨基础上发展起来的独立变桨距技术,每支叶片根据自己的控制规律独立地变化桨距角,可以有效解决桨叶和塔架等部件的载荷不均匀问题,具有结构紧凑简单、易于施加各种控制、可靠性高等优势,越来越受到国际风电市场的欢迎。
兆瓦级变速恒频变桨距风电机组是目前国际上技术比较先进的风力机型,从今后的发展趋势看,必然取代定桨距风力机而成为风力发电机组的主力机型。其中变桨距技术在变速恒频风力机研究中占有重要地位,是变速恒频技术实现的前提条件。研究这种技术,提高风电机组的柔性,延长机组的寿命,是目前国外研究的热点,但是国内对此研究甚少,对这一前瞻性课题进行立项资助,掌握具备自主知识产权的独立变桨控制技术,对于打破发达国家对先进的风力发电技术的垄断,促进我国风力发电事业的进一步发展具有重要意义。
为了获得足够的起在变桨距系统中需要具有高可靠性的控制器,本文中采用了OMRON公司的CJ1M系列可编程控制器作为变桨距系统的控制器,并设计了PLC软件程序,在国外某知名风电公司风力发电机组上作了实验。
2变桨距风力机及其控制方式
变桨距调速是现代风力发电机主要的调速方式之一,如图1所示为变桨距风力发电机的简图。调速装置通过增大桨距角的方式减小由于风速增大使叶轮转速加快的趋势。当风速增大时,变桨距液压缸动作,推动叶片向桨距角增大的方向转动使叶片吸收的风能减少,维持风轮运转在额定转速范围内。当风速减小时,实行相反操作,实现风轮吸收的功率能基本保持恒定。液压控制系统具有传动力矩大、重量轻、刚度大、定位精确、液压执行机构动态响应速度快等优点,能够保证更加快速、准确地把叶片调节至预定节距[4][5]。目前国内生产和运行的大型风力发电机的变距装置大多采用液压系统作为动力系统。
图1变桨距风力发电机简图
如图2所示为变桨距控制器的原理框图。在发动机并入电网之前由速度控制器根据发动机的转速反馈信号进行变桨距控制,根据转速及风速信号来确定桨叶处于待机或顺桨位置;发动机并入电网之后,功率控制器起作用,功率调节器通常采用PI(或PID)控制,功率误差信号经过PI运算后得到桨距角位置。
图2变桨距风力机控制框图
当风力机在停机状态时,桨距角处于90°的位置,这时气流对桨叶不产生转矩;当风力机由停机状态变为运行状态时,桨距角由90°以一定速度(约1°/s)减小到待机角度(本系统中为15°);若风速达到并网风速,桨距角继续减小到3°(桨距角在3°左右时具有最佳风能吸收系数);发电机并上电网后,当风速小于额定风速时,使桨距角保持在3°不变;当风速高于额定风速时,根据功率反馈信号,控制器向比例阀输出-10V-+10V电压,控制比例阀输出流量的方向和大小。变桨距液压缸按比例阀输出的流量和方向来操纵叶片的桨距角,使输出功率维持在额定功率附近。若出现故障或有停机命令时,控制器将输出迅速顺桨命令,使得风力机能快速停机,顺桨速度可达20°/s。
3 首页 下一页 上一页 尾页上一篇:下一代储能电池:六种燃料电池介绍
-
湘电风能2000万欧元增资子公司2024-08-16
-
陆上风能资源专业观测网建成2024-08-16
-
苹果获准风能储热发电系统方案专利2024-08-16
-
2012年欧洲风能行业呈增长态势2024-08-16
-
美国风能发展前景广阔2024-08-16
-
太阳能与风能成本差距逐渐减少2024-08-16
-
阳光电源WG7500KFP闪耀国际风能展2024-08-16
-
高空风能有望引领能源改革 清洁能源市场发展前景广阔2024-08-16
-
越南男子发明南瓜形风力发电机 可为家庭供电2024-08-16
-
韩文科:发展太阳能及风能发电并网2024-08-16
-
全球风能理事会:今年全球风电总装机将破4亿2024-08-16
-
齐齐哈尔可开发利用的风能资源储量达2100万千瓦2024-08-16
-
全球风能迎来新一轮热潮2024-08-16
-
全球风能迎来新一轮热潮2024-08-16
-
国家能源局要求推进风能开发 增强光伏扶贫力度2024-08-16