五部门关于开展2024年江南网页版登录入口官网下载 下乡活动的通知
超小型UCSP封装器件改善便携设备的电池管理
超小型UCSP封装器件改善便携设备的电池管理 摘要:这篇应用笔记主要讨论智能电话、手机及其它便携设备中的电池管理。介绍了如何利用简单的超小尺寸、超低功耗器件(例如:电流检测
摘要:这篇应用笔记主要讨论智能电话、手机及其它便携设备中的电池管理。介绍了如何利用简单的超小尺寸、超低功耗器件(例如:电流检测放大器和一个比较器)解决电池剩余电量的估算以及电池过流保护等问题。
引言
智能电话、手机及其它便携设备要求越来越小的外形尺寸和功耗。同时,设备的复杂性和功能却持续增加。由此可见,每个功能电路所能占用的空间正在以惊人的速度下降。
这篇应用笔记介绍了一个简单、节省空间的方法,用于解决便携产品的两个主要问题。首先介绍其高精度、超低功耗的电池剩余电量估算功能;然后介绍其结构紧凑的低功耗Li+电池过流保护功能。
Li+电池电流监测
精确测量负载的电流损耗可以估算Li+电池的剩余电量,在Li+电池和负载之间连接一个小的检流电阻,可以在电阻上产生正比于负载电流的压降。检流放大器用于检测电阻上的压降(典型值为几十mV),并根据模/数转换器(ADC)的动态范围对信号进行放大,得到适当的输出电压。这种转换器通常集成在RF芯片组或电源管理集成电路(PMIC)内,检流放大器应尽可能采用同相配置。这种应用对电路要求主要有两点:小尺寸和低功耗,这也是便携设备极具吸引力的特性。
图1所示为MAX9938检流放大器,室温下(25°C),器件具有低于1µA (最大值)的超低静态电流,采用微型1mm x 1mm、4焊球UCSP (超晶片级封装)。晶片级封装是一种IC封装工艺,用焊球代替引脚,从而获得最小的封装尺寸¹。检流放大器的低输入失调电压能够保证检流电阻的压降最小,从而使检流电阻本身的功耗降至最小。
在智能电话等典型的便携式设备中,发射模式下的峰值电流可能达到1A。假设ADC的满量程电压为2.5V,对于固定增益为50的MAX9938F,可以使用50mΩ的检流电阻。因此,检流电阻两端的最大压降为50mV,最大功耗是50mW。采用最大输入失调电压小于500µV的放大器,由此引入的误差将限制在峰值电流的1%以内。
如果系统要求更高的检测精度,可以使用100mΩ的检流电阻和固定增益为25的MAX9938T。失调误差可以减小到峰值电流的0.5%,但检流电阻的功耗加倍。
图1. MAX9938F检流放大器用于测量电池电流,而MAX9061比较器用于检测过流事件。
过流保护
如果电路中使用了故障元件,或者有些情况同时启动过多的软件操作,可能会发生过流。无论是哪种原因,必须以中断形式将这种故障状况通知中央处理器。
便携应用中,最好采用MAX9061比较器实现过流保护(图1)。MAX9061采用创新设计,由作用在同相输入端的基准电压为其内部电路供电,该电压可以在0.9V至5.5V范围内。反相输入可以低至-0.3V,高达5.5V,与基准电压无关。采用漏极开路输出,所以需要外部上拉电阻,多数情况下可以借助微控制器的内部上拉电阻。独特的创新架构使得该比较器可以集成在超小尺寸的1mm x 1mm、4焊球UCSP封装内。
图1中,MAX9061的输入连接到检流放大器的输出,最大电压为2.5V,该电压对应于峰值电池电流。基准电压可以连接到电压高于峰值输入的低压差(LDO)线性稳压器,例如2.7V。当MAX9061输入高于基准电压时,比较器输出被置为低电平,产生一次中断。
MAX9061除了具有尺寸等同于2个0402电阻的小封装优势外,还具有超低功耗,仅消耗100nA (最大值)的偏置电流。为降低电流,可以使用尽可能大的上拉电阻,因为中断是在比较器的下降沿产生的,下降时间与上拉电阻的阻值无关。如果需要极性相反的输出,可以选择MAX9060,当基准电压高于输入电压时,比较器输出低电平。
电路测试
对图1电路进行测试,利用一个电压源代替电池,假设Li+电池充满时的最高电压为4.2V,该电源经过检流电阻为负载提供1A的电流。电压源可以按照电池放电的规律逐渐降至2.8V。表1给出了测试结果,图2为MAX9938F的增益曲线,利用两个测试点,可以得到实际器件测试的增益误差为0.21%。
表1. MAX9938F的输入(VSENSE)和输出(VOUT)测量
图2. MAX9938F的增益曲线
然后将电压源设置在4.5V以上,模拟大于1A的过流条件。图3所示为MAX9061的响应特性,产生一次中断。
图3. MAX9061在过流条件下产生从高到低的中断信号
结论
目前,随着便携产品的外形尺寸越来越小,对高精度、紧凑IC的需求也不断增加。这篇应用笔记介绍了如何利用微小的、4焊球UCSP封装的检流放大器和比较器实现简单的电池管理功能,例如:电池剩余电量估算和过流保护。
来源:森林
-
燃料电池电动汽车的缺点2023-11-30
-
燃料电池汽车工作原理2023-11-30
-
燃料电池汽车特点2023-11-30
-
燃料电池汽车关键技术2023-11-30
-
中国氢燃料电池汽车落后国外5—10年2023-11-30
-
通用氢燃料电池汽车有望提前量产2023-11-30
-
燃料电池车,是在侮辱谁的智商?2023-11-30
-
电动车的生机远远大于燃料电池汽车2023-11-30
-
燃料电池客车最有希望率先商业化2023-11-30
-
“十三五”电动汽车展望 电池决定发展重点2023-11-30
-
燃料电池汽车前景如何2023-11-30
-
续航大调查 揭秘特斯拉电池衰减的真实性2016-06-22
-
杨续来:动力电池国产化突破需要精细化管理2016-06-22
-
郑世雄:新能源电池系统应更标准化2016-06-22
-
金秀铃:打开电动汽车市场须控制电池成本2016-06-22