五部门关于开展2024年江南网页版登录入口官网下载 下乡活动的通知
智能单片线性锂离子电池充电器IC设计
智能单片线性锂离子电池充电器IC设计 摘要:锂离子电池由于体积小、重量轻、能量密度高和循环寿命长等优点,在便携式设备中得到了广泛的应用,由于锂离子电池的使用寿命与锂离子电池充电器
摘要:锂离子电池由于体积小、重量轻、能量密度高和循环寿命长等优点,在便携式设备中得到了广泛的应用,由于锂离子电池的使用寿命与锂离子电池充电器的充电方法密切相关,充电器必须安全、快速、效率高。考虑到IC的成本,采用CMOS工艺设计了一款具有智能热调整功能的单片线性锂离子电池充电器IC,在此设计的线性锂离子电池充电器IC在恒流/恒压充电模式的基础上,增加了涓流充电模式和智能热调整模式。
锂离子和锂聚合物电池具有工作电压高、无记忆效应、工作温度范围宽、自放电率低及比能量高优点。使其能够较好地满足便携式设备对电源小型化、轻量化、长工作时间和长循环寿命以及对环境无害等要求,同时随着锂离子电池产量的提高,成本的降低,锂离子电池以其卓越的高性价比优势在便携式设备电源上取得了主导地位,这也使得锂离子电池充电器得到了巨大的发展和广阔的市场。本文设计一款针对单节锂电池的线性充电器IC.该IC采用涓流-恒流-恒压三阶段充电法对充电过程进行控制。
1 线性锂离子电池充电器的整体结构设计
图1所示为本文锂离子电池充电器的整体功能模块图。这些子模块包括。基准电压源、基准电流源、欠压闭锁模块、恒流充电放大器、恒压充电放大器、智能热调整放大器、钳位放大器、振荡器、计数器、电池温度保护模块、功率管衬底保护模块、逻辑模块以及多个比较器模块。
考虑芯片的实际应用,本文设计的锂离子电池充电器具有以下几个特点:
(1)芯片的温度保护方面在充电过程中,当电池的电压达到涓流充电跳变电压门限而进入恒流阶段时,恒流阶段为大电流充电,由于本文的功率管为PMOS,在负载电池和电源之间只有该功率管,此时电池电压较低,芯片功率耗散达到最大。其功率耗散为:
P=(Vcc-VBAT)Icc (1)
大功率耗散将导致芯片的温度急剧上升,因此设置了一个智能的热反馈回路。当芯片温度上升到热反馈温度点105℃时,启动热反馈回路,使芯片温度维持在105℃。当电池电压进一步升高时,由式(1)可知,功率耗散逐渐降低,在较小的功率耗散下,芯片的温度会逐渐降低。此时退出智能热调整工作模式,进入恒流充电模式,使用大电流Icc对电池充电,或者直接进入恒压充电阶段。该热反馈回路的使用,使充电的速率最大化,同时用户无需担心芯片的温度过高。
(2)成本方面。本文介绍的芯片采用CMOS工艺设计,成本低,工艺易于实现。
(3)与用户的交互式管理方面。芯片提供了多个外部用户编程引脚以方便用户对芯片的管理和使用。在充电电流的控制方面,用户可以通过连接1只电阻至芯片一个引脚对充电电流进行编程;在充电最终电压的控制方面,用户可通过将芯片的一个引脚接高电平或低电平来设置最终充电电压为4.1 V或4.z V,以适应对使用不同的负极材料的锂离子电池进行充电;在充电时间的控制上,用户可通过连接1只电容至芯片1个引脚对充电时间进行编程,满足用户不同的充电时间要求。芯片设计预计达到的特性和参数见表1.
-
铅酸蓄电池智能充电器原理与维修方法2016-06-15
-
基于超级电容-铅酸蓄电池混合储能的太阳能充电器2016-06-15
-
基于单片机的锂电池充电器硬件设计2016-06-15
-
电动车用48V (20A·h)蓄电池充电器的研究2016-06-15
-
基于SPCE061的MPPT太阳能锂电池充电器设计2016-06-15
-
解析锂离子电池的研究与现状2016-06-15
-
基于三段式充电控制的智能充电器设计方案2016-06-15
-
充电器使用不当也能引起电池爆炸2016-06-15
-
一款便携式简单型锂电池充电器的制作2016-06-15
-
锂离子电池的结构2016-06-15
-
基于高电压锂离子电池组的充电方法2016-06-15
-
Linear新推400mA同步降压型电池充电器LTC41212016-06-15
-
精工半导体推出配有温度及充电/放电控制选项的新型单芯锂离子电池保护IC2016-06-15
-
精工半导体推出配有温度及充电/放电控制选项的新型单芯锂离子电池保护IC2016-06-13
-
解析48V锂离子电池系统的关键技术及应用现状2016-06-13